CS 4530: Fundamentals of Software Engineering

Module 10.3 Building REST APIs

Adeel Bhutta, Mitch Wand
Khoury College of Computer Sciences

© 2023 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson

« At the end of this lesson you should be
able to

« Explain the basic principles of the REST
methodology

« Construct a simple REST server using TSOA

REST: Representational State
Transfer

« A design principle for http requests
« Commonly used for APIs

REST Principles

* Single Server - As far as the client
knows, there’s just one

 Stateless - Each request contains enough
information that a different server could
process it (if there were multiple...)

« Uniform Cacheability - Each request is
identified as cacheable or not.

« Uniform Interface - Standard way to
specify interface

lllllll

rrrrrrrrrr

7 MR A Psce@none
Lo of thish L

atabase
ervers

"Not cacheable” means that it must be
executed exactly once per user request.

* For example, POST is typically not
cacheable

B

|Confirm Form Resubmission I

This webpage requires data that you entered earlier in order to be properly displayed.

You can send this data again, but by doing so you will repeat any action this page
previously performed.

Press the reload button to resubmit the data needed to load the page.

ERR_CACHE_MISS

Uniform Interface:
URIs are nouns

« In @ RESTful system, the server is
visualized as a store of named resources
(nouns), each of which has some data
associated with it.

« A URI is a name for such a resource.

Examples

« Examples:
 /cities/losangeles

e /transcripts/00345/graduate (student
00345 has several transcripts in the system;
this is the graduate one)

* Anti-examples:
« /getCity/losangeles
» /getCitybyID/50654
e /Cities.php?1d=50654

We prefer plural nouns for
toplevel resources, as ou
see here.

Useful heuristic: if you
were keeping this data in
a bunch of files, what
would the directory
structure look like?

But you don't have to
actually keep the data v
that way.

Path parameters specify portions of
the path to the resource

For example, your REST protocol might allow a path like
/transcripts/00345/graduate

In a REST protocol, this API might be described as
/transcripts/:studentid/graduate

:studentid is a path parameter, which is replaced by the value
of the parameter

Query parameters allow named
parameters

Example:
/transcripts/graduate?lastname=covey&firstname=avery

These are typically used to specify more flexible queries,
or to embed information about the sender’s state, eg

httgs://calendar.google.com/calendar/u/@/r/month/2@23/
2/1?2tab=mc&pli=1

This URI combines path parameters for the month and
date, and query parameters for the format (tab and pli).

https://calendar.google.com/calendar/u/0/r/month/2023/2/1?tab=mc&pli=1
https://calendar.google.com/calendar/u/0/r/month/2023/2/1?tab=mc&pli=1

You can also put parameters in the
body.

 You can put additional parameters or
iInformation in the body, using any coding that
you like. (We'll usually use JSON)

* You can also put parameters in the headers.

« TSOA gives tools for extracting all of these
parameters

10

Uniform Interface:
Verbs are represented as http methods

« In REST, there are exactly four things
you can do with a resource

 POST: requests that the server create a
resource with a given value.

 GET: requests that the server respond
with a representation of the resource

 PUT: requests that the server replace the
value of the resource by the given value

« DELETE: requests that the server delete
the resource

Example interface #1: a todo-list
manager

« Resource: /todos
« GET /todos - get list all of my todo items

« POST /todos - create a new todo item (data
in body; returns ID number of the new item)

» Resource: /todos/:todoltemID
 :todoltemlID is a path parameter
. SETd/todos/:todoItemID - fetch a single item
Vi
« PUT /todos/:todoltemID - update a single
item (new data in body)

« DELETE /todos/:todoltemID - delete a single
item

Example interface #2: the transcript
database

Remember the heuristic:

POST /transcripts If vou were keeping this
-- adds a new student to the database, data in a bunch of files,
-- returns an ID for this student. what would the directory

-- requires a body parameter 'name', url-encoded (eg name=avery) structure look like?

-- Multiple students may have the same name.
GET /transcripts/:ID

-- returns transcript for student with given ID. Fails if no such student
DELETE /transcripts/:ID

-- deletes transcript for student with the given ID, fails if no such student
POST /transcripts/:studentID/:courseNumber

-- adds an entry in this student's transcript with given name and course.

-- Requires a body parameter 'grade'.

-- Fails if there is already an entry for this course in the student's transcript
GET /transcripts/:studentID/:courseNumber

-- returns the student's grade in the specified course.

-- Fails if student or course is missing.
GET /studentids?name=string Didn'+ seem to fit

-- returns list of IDs for student with the given name the model, sorry

It would be better to have a
machine-readable specification

* The specification of the transcript API on
the last slide is RESTful, but is not
machine-readable

* A machine-readable specification is
useful for:

« Automatically generating client and server
boilerplate, documentation, examples

« Tracking how an API evolves over time
« Ensuring that there are no misunderstandings

OpenAPI is a machine-readable
specification language for REST

 Written in YAML

* Not really convenient
for human use

* Better: use a tool!

/towns/{townID}/viewingArea:
post:

operationId: CreateViewingArea
responses:

'204":
description: No content
'400":
description: Invalid values specified
content:

application/json:
schema:

Sref: '#/components/schemas/InvalidParametersError'
description: Creates a viewing area in a given town
tags:

- towns
security: []
parameters:

- description: ID of the town in which to create the new viewing area
in: path
name: townID
required: true

schema:
type: string
- description: |-

session token of the player making the request, must
match the session token returned when the player joined the town
in: header
name: X-Session-Token
required: true

schema:
type: string
requestBody:

description: The new viewing area to create
required: true
content:

application/json:
schema:

Sref: '#/components/schemas/ViewingArea'
description: The new viewing area to create

TSOA uses TS annotations to
generate all the needed pieces

Running server
code

Typescript with
@Annotations

Readable HTML
documentation
(Swagger)

OpenAPI
documentation

Sample annpt=ted-tunegcript (1)

This class defines

methods that can be

@QRoute ('towns') . I(d h b
exporf Class TownsController exter Invoked on the base
route /towns
/**
* Creates a viewing area 1in a given town
*
“ @param townID 1D of the town in wni ThiS method can be invoked by making a
* @param sessionToken session token (POST request to
* h th i k S
metchthe session toren retho frowns/{townlD}/viewingArea - where
* @param requestBody The new viewin
* /towns was the base route for the class.
* @throws InvalidParametersErro 1f 1 {tovvnID}iSEipath paranqeter
* viewing area could fiot be
*/

@Post (' {townID}/viewingArea') In the event of an InvalidParametersError, the

GResponse<InvalidParametersError> (400, 'Invalid values specified') «— HTTP response will have the error status code

pUBIlC async crea“evlew1ngzreaz u400n

@Path() townID: string,

@Header ('X-Session-Token') sessionToken: string,
| , ,
@Body () requestBody: ViewingArea,
]
) { /** method body goes here */ }

Sample annpt=ted-tunagcript (2)

@QRoute ('towns')

exporf class TownsController exter

This class defines
methods that can be
invoked on the base

route /towns

/**

* Creates a viewing area 1n a given town

@param townID ID of the town in whi
@param sessionToken session token d POST request to

*
*
* match the session token rety . .

-where
* @param requestBody The new viewin /towns/{townlD}/wewmgArea
*
*
*

@throws InvalidParametersErroy/ if f {tOWﬂ|D} is a path paramet
ot be will come from the corresponding Path

viewing area could

@Post('{townID}/viewingArea‘)

@Response<InvalidParametersError> (400,

public async createViewlngArea
@Path() townID: string;

@Header ('X-Session-Token') sessionToken: string,

|
@Body () requestBody: ViewingArea,
]

) { /** method body goes here */ }

This method can be invoked by making a

/towns was the base route for tf
The townID parameter to the method

parameter of the URI.

' id values specified') || " . ” .
The “sessionToken” parameter will come from

/ an HTTP header called “X-Session-Token”

‘\\\\\\\\\\\

The requestBody parameter will come
from the body of the HTTP request

Sample generated HTML (*

Swagger”)

- /towns/{townID}
T /viewingArea

Creates a viewing area in a given town

Parameters

Name

townID * required
string
(path)

X-Session-
Token * required

string
(header)

Request body

Try it out

Description

ID of the town in which to create the new viewing
area

session token of the player making the request,
must match the session token returned when the
player joined the town

[application/json v

The new viewing area to create

Example Value | Schema

"id": "string”,
"video": "string",

"isPlaying":
"elapsedTimeSec":

true,

Not everything can be generated ®

« What if your API method ends with an error,
like

throw new InvalidParametersError ('Some message’)

« We need to transmit this information back the
requester.

« We'll need a little custom code to do this— the
TSOA language doesn’t do this automatically
(ITUC)

Converting JavaScript Errors to HTTP
Errors [server.ts]

- Under the hood, we use the popular app - use (
express web server for NodelS (

err: unknown, reqg: Express.Request, res: Express.Response,
next: Express.NextFunction,

« Express uses an internal pipeline): Express.Response | void => {
. . if (err instanceof ValidateError) {
architecture for processing requests feturn res.etatie(422) Gson (]
message: 'Validation Failed',
« S0 we wrote a custom pipeline stage details: err?.fields,

to take care of this. } b g

if (err instanceof InvalidParametersError) {

- This pipeline stage runs after the Fetarn res.frarnetioy) gsontl |
. message: nvall parameters ',
controller, inspects any error that details: err?.message
might be thrown, and returns an b

HTTP error of 400, 422 or 500, } |

depending on which kind of error you tt (err dnstanceol Error)
console.trace (err) ;

threW. return res.status (500) .7Json ({

message: 'Internal Server Error',
})

« Unlikely you will ever have to do this. }

return next () ;
s
)

https://expressjs.com/

Swagger in the wild

National Park Service

[Base URL: developer.nps.gov/api/vl
L gov, /

This APl is designed to provide authoritative National Park Service (NPS) data and content about parks and their facilities, events, news, alerts,
and more. Explore the NP5 API below and even try to make API calls. In order to try an API call, you'll need to click on the "Authorize" button

below and add your API key. If you don't have an API key yet, visit our Get Started page.

Schemes
HTTPS - Authorize @
activities Retrieve categories of activities (astronomy, hiking, wildlife watching, etc.) possible in national parks. N

Retrieve national parks that are related to particular categories of activity (astronomy, hiking, wildlife

activities/parks ,.iching erc) v
‘ﬂ Jactivities/parks 8 ‘
alerts Retrieve alerts (danger, closure, caution, and information) posted by parks. N

22

Activity: Build the Transcript REST
API

/transcripts ~

@Route ('transcripts')
export class TranscriptsController extends
Controller {

No parameters

Execute Clear
@Get ()
. Responses
public getAll () |
return db.getAIl(); curl
} curl -X "GET" \
"http://localhost:8081/transcripts’ \
-H "accept: application/json'
Request URL
Server response
O pe n A P I Code Details
SpeCIflcatlon 200 Response body

L
{
"student": {
"studentID":

"studentName": "avery”

1.
"grades": [

	Module 10.5 REST
	Slide 1: CS 4530: Fundamentals of Software Engineering Module 10.3 Building REST APIs
	Slide 2: Learning Goals for this Lesson
	Slide 3: REST: Representational State Transfer
	Slide 4: REST Principles
	Slide 5: “Not cacheable” means that it must be executed exactly once per user request.
	Slide 6: Uniform Interface: URIs are nouns
	Slide 7: Examples
	Slide 8: Path parameters specify portions of the path to the resource
	Slide 9: Query parameters allow named parameters
	Slide 10: You can also put parameters in the body.
	Slide 11: Uniform Interface: Verbs are represented as http methods
	Slide 12: Example interface #1: a todo-list manager
	Slide 13: Example interface #2: the transcript database
	Slide 14: It would be better to have a machine-readable specification
	Slide 15: OpenAPI is a machine-readable specification language for REST
	Slide 16: TSOA uses TS annotations to generate all the needed pieces
	Slide 17: Sample annotated typescript (1)
	Slide 18: Sample annotated typescript (2)
	Slide 19: Sample generated HTML (“Swagger”)
	Slide 20: Not everything can be generated 
	Slide 21: Converting JavaScript Errors to HTTP Errors
	Slide 22: Swagger in the wild
	Slide 23: Activity: Build the Transcript REST API

